Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

earth and planetary sciences

Stability analysis of stratified rock slopes with spatially variable strength parameters: the case of Qianjiangping landslide

Bulletin of Engineering Geology and the Environment, Volume 76, No. 3, Year 2017

Jurassic strata prone to slope failure are widely distributed in the Three Gorges Reservoir region. The limit equilibrium method is generally used to analyze the stability of rock slopes that have a single failure plane. However, the stability of a stratified rock mass cannot be accurately estimated by this method because different bedding planes have variable shear strength parameters. A modified limit equilibrium method is presented with variable water pressure and shear strength used to estimate the stability coefficient of a sloping mass of stratified rock and to identify the potential sliding surface. Furthermore, an S-curve model is used to define the spatial variations of the shear strength parameters c and ϕ of the bedding plane and the tensile strength of the rock mass. This model can also describe the variation of strength parameters with distance from the slope surface, which depends on the reservoir water level. Also, it is used to evaluate the stability of the Qianjiangping landslide, located at Shazhenxi Town, Zigui County, Three Gorges Reservoir area, China. The results show the most probable sliding surface is the interface between a slightly weathered layer and subjacent bedrock. When reservoir water rises above the elevation of the slide mass toe, the stability coefficient of the slope declines sharply. When the reservoir water level is static at 135 m, the stability coefficient decreases gradually as the phreatic line changes as a result of heavy rainfall.
Statistics
Citations: 79
Authors: 3
Affiliations: 3
Identifiers
Research Areas
Environmental