Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

environmental science

Impact of outdoor and indoor meteorological conditions on the COVID-19 transmission in the western region of Saudi Arabia

Journal of Environmental Management, Volume 288, Article 112392, Year 2021

Meteorological conditions may influence the incidence of many infectious diseases. Coronavirus disease-2019 (COVID-19) is a highly contagious, air-borne, emerging, viral disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In 2020, the COVID-19 global pandemic affected more than 210 countries and territories worldwide including Saudi Arabia. There are contradictory research papers about the correlation between meteorological parameters and incidence of COVID-19 in some countries worldwide. The current study investigates the impact of outdoor and indoor meteorological conditions on the daily recorded COVID-19 cases in western region (Makkah and Madinah cities) of Saudi Arabia over a period of 8 months from March to October 2020. Reports of the daily confirmed COVID-19 cases from the webpage of Saudi Ministry of Health (MOH) were used. Considering, the incubation period of COVID-19 which ranged from 2 to 14 days, the relationships between daily COVID-19 cases and outdoor meteorological factors (temperature, relative humidity, and wind speed) using a lag time of 10 days are investigated. The results showed that the highest daily COVID-19 cases in Makkah and Madinah were reported during the hottest months of the year (April–July 2020) when outdoor temperature ranged from 26.51 to 40.71 °C in Makkah and of 23.89–41.20 °C in Madinah, respectively. Partial negative correlation was detected between outdoor relative humidity and daily recorded COVID-19 cases. No obvious correlation could be demonstrated between wind speed and daily COVID-19 cases. This indicated that most of SARS-CoV-2 infection occurred in the cool, air-conditioned, dry, and bad-ventilated indoor environment in the investigated cities. These results will help the epidemiologists to understand the correlation between both outdoor and indoor meteorological conditions and SARS-CoV-2 transmissibility. These findings would be also a useful supplement to assist the local healthcare policymakers to implement and apply a specific preventive measures and education programs for controlling of COVID-19 transmission.
Statistics
Citations: 31
Authors: 3
Affiliations: 3
Research Areas
Covid
Environmental
Health System And Policy
Study Design
Cohort Study