Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

CaV1.2/CaV3.x channels mediate divergent vasomotor responses in human cerebral arteries

Journal of General Physiology, Volume 145, No. 5, Year 2015

The regulation of arterial tone is critical in the spatial and temporal control of cerebral blood flow. Voltage-gated Ca2+ (CaV) channels are key regulators of excitation-contraction coupling in arterial smooth muscle, and thereby of arterial tone. Although L- and T-type CaV channels have been identified in rodent smooth muscle, little is known about the expression and function of specific CaV subtypes in human arteries. Here, we determined which CaV subtypes are present in human cerebral arteries and defined their roles in determining arterial tone. Quantitative polymerase chain reaction and Western blot analysis, respectively, identified mRNA and protein for L- and T-type channels in smooth muscle of cerebral arteries harvested from patients undergoing resection surgery. Analogous to rodents, CaV1.2 (L-type) and CaV3.2 (T-type) α1 subunits were expressed in human cerebral arterial smooth muscle; intriguingly, the CaV3.1 (T-type) subtype present in rodents was replaced with a different T-type isoform, CaV3.3, in humans. Using established pharmacological and electrophysiological tools, we separated and characterized the unique profiles of Ca2+ channel subtypes. Pressurized vessel myography identified a key role for CaV1.2 and CaV3.3 channels in mediating cerebral arterial constriction, with the former and latter predominating at higher and lower intraluminal pressures, respectively. In contrast, CaV3.2 antagonized arterial tone through downstream regulation of the large-conductance Ca2+-activated K+ channel. Computational analysis indicated that each Ca2+ channel subtype will uniquely contribute to the dynamic regulation of cerebral blood flow. In conclusion, this study documents the expression of three distinct Ca2+ channel subtypes in human cerebral arteries and further shows how they act together to orchestrate arterial tone.
Statistics
Citations: 36
Authors: 10
Affiliations: 5
Identifiers
Research Areas
Health System And Policy
Study Approach
Quantitative