Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

earth and planetary sciences

Examining the rainfall–topography relationship using non-stationary modelling technique in semi-arid Aseer region, Saudi Arabia

Arabian Journal of Geosciences, Volume 11, No. 9, Article 215, Year 2018

The mountainous region of Aseer, corresponding to the Afromontane phytogeographic region, is an eco-sensitive zone and has complex relationship between topography and rainfall. The region is located inland of the red sea escarpment edge in the west. Therefore, rainfall can occur during any month of the year in the mountain of the high Aseer region when moist air forces up the escarpment from the red sea. Monitoring the rainfall data and its topographical elevation variable in Aseer region is an essential requirement for feasible and accurate rainfall-based data for different applications, such as hydrological and ecological resource management in rugged terrain and remote areas. The relationship of elevation and rainfall are spatially non-stationary, non-linear, scale dependent, and often modelled by conventional regression models. Therefore, a local modelling technique, geographically weighted regression (GWR), was applied to deal with non-stationary, non-linear, scale-dependent problems. The GWR using topoclimatic data (elevation and rainfall) to analyse the cumulative rainfall data for rainy months (March to June) of the 4 years estimated from CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) product for Aseer region. The bandwidth (scale-size) of the Aseer region rainfall–elevation relationship has stabilised at round off 12 km. By selecting the suitable bandwidth, the spatial pattern of the rainfall–elevation relationship was significantly enhanced by using the GWR than the traditional ordinary least squares (OLS) regression model. GWR local modelling techniques estimated well in terms of accuracy, predictive power and decreased residual autocorrelation. Additionally, GWR assesses the significance of local statistic at each location and identified the location of spatial clusters with local regression coefficients significantly improved as compared with global OLS model, thereby highlighting local variations. Therefore, the GWR, local modelling approach managed to produce more accurate estimates by taking into account local characteristics.
Statistics
Citations: 16
Authors: 8
Affiliations: 3
Identifiers
Research Areas
Environmental