Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

chemistry

Enabling High-Performance NASICON-Based Solid-State Lithium Metal Batteries Towards Practical Conditions

Advanced Functional Materials, Volume 31, No. 30, Article 2102765, Year 2021

Solid-state lithium metal batteries (SSLMBs) are promising next-generation high-energy rechargeable batteries. However, the practical energy densities of the reported SSLMBs have been significantly overstated due to the use of thick solid-state electrolytes, thick lithium (Li) anodes, and thin cathodes. Here, a high-performance NASICON-based SSLMB using a thin (60 µm) Li1.5Al0.5Ge1.5(PO4)3 (LAGP) electrolyte, ultrathin (36 µm) Li metal, and high-loading (8 mg cm−2) LiFePO4 (LFP) cathode is reported. The thin and dense LAGP electrolyte prepared by hot-pressing exhibits a high Li ionic conductivity of 1 × 10−3 S cm−1 at 80 °C. The assembled SSLMB can thus deliver an increased areal capacity of ≈1 mAh cm−2 at C/5 with a high capacity retention of ≈96% after 50 cycles under 80 °C. Furthermore, it is revealed by synchrotron X-ray absorption spectroscopy and in situ high-energy X-ray diffraction that the side reactions between LAGP electrolyte and LFP cathode are significantly suppressed, while rational surface protection is required for Ni-rich layered cathodes. This study provides valuable insights and guidelines for the development of high-energy SSLMBs towards practical conditions.
Statistics
Citations: 26
Authors: 23
Affiliations: 8
Identifiers