Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

Development and validation of a liquid chromatography-tandem mass spectrometry method for quantifying delamanid and its metabolite in small hair samples

Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, Volume 1169, Article 122467, Year 2021

New all-oral regimens for rifampin-resistant tuberculosis (RR-TB) are being scaled up globally. Measurement of drug concentrations in hair assesses long-term drug exposure. Delamanid (DLM) is likely to be a key component of future RR-TB treatment regimens, but a method to describe its quantification in hair via liquid chromatography-tandem mass spectrometry (LC-MS/MS) has not previously been described. We developed and validated a simple, fast, sensitive, and accurate LC-MS/MS method for quantifying DLM and its metabolite DM-6705 in small hair samples. We pulverized and extracted two milligrams of hair in methanol at 37 °C for two hours, and diluted 1:1 with water. A gradient elution method eluted DLM, DM-6705, and the internal standard OPC 14714 within 3 min, bringing overall analysis time to 5.5 min. The method has limits of detection (LOD) of 0.0003 ng/mg for DLM and 0.003 ng/mg for DM-6705. The established linear dynamic ranges are 0.003–2.1 ng/mg and 0.03–21 ng/mg for DLM and DM-6705, respectively. Eleven of 12 participant hair samples had concentrations within DLM's linear dynamic range, while all 12 samples had concentrations within the quantifiable range for DM-6705. The ranges of concentrations observed in these clinical samples for DLM and DM-6705 were 0.004–0.264 ng/mg hair and 0.412–12.041 ng/mg hair respectively. We demonstrate that while DLM was detected in hair at very low levels, its primary metabolite DM-6705 had levels approximately 100 times higher. Measuring DM-6705 in hair may accurately reflect long-term adherence to DLM-containing regimens for drug-resistant TB.
Statistics
Citations: 8
Authors: 8
Affiliations: 2
Identifiers
Research Areas
Environmental
Health System And Policy
Infectious Diseases