Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

immunology and microbiology

AAV9-mediated AIRE gene delivery clears circulating antibodies and tissue T-cell infiltration in a mouse model of autoimmune polyglandular syndrome type-1

Clinical and Translational Immunology, Volume 9, No. 9, Article e1166, Year 2020

Objectives: Autoimmune polyglandular syndrome type-1 (APS-1) is a monogenic recessive disorder characterised by multiple endocrine abnormalities, chronic mucocutaneous candidiasis and high titres of serum autoantibodies. To date, no curative treatment is available; current therapies manage the symptoms rather than treating the cause and have major side effects. APS-1 is caused by mutations in the autoimmune regulator (AIRE) gene. AIRE mediates central tolerance by directing the ectopic expression of tissue-specific antigens (TSAs) in medullary thymic epithelial cells, causing the deletion of self-reactive thymocytes. Therefore, loss-of-function mutations in AIRE result in a multisystem autoimmune disease. Because of the monogenic aetiology of APS-1 and availability of an APS-1 mouse model, we have explored the option of restoring functional AIRE using adeno-associated virus serotype 9 (AAV9). Methods: The efficacy of AAV9-AIRE (AAV9 carrying AIRE cDNA) gene therapy was assessed in an APS-1 mouse model. We performed intrathymic injection of AAV9-AIRE into APS-1 mouse model using ultrasound imaging technique to accurately locating the thymus. We evaluated the efficiency of this approach alongside measures of autoimmunity and histology of target tissues. Results: Intrathymic injection of AAV9-AIRE demonstrated high transduction efficiency and restored AIRE expression in the thymus. AIRE gene delivery led to a significant increase in TSA expression, and importantly a significant reduction of serum autoantibodies in treated versus control mice, which fell to near-undetectable levels by 4 weeks post-treatment. Furthermore, histological analysis of treated animals showed near-normal tissue morphology with no lymphocytic infiltrations, a hallmark of untreated Aire-deficient mice. Conclusion: This study has demonstrated the feasibility of AAV9-AIRE as a vehicle for gene therapy for APS-1.

Statistics
Citations: 5
Authors: 3
Affiliations: 3
Identifiers
Research Areas
Genetics And Genomics