Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

medicine

Sensitivity of recordings at sphenoidal electrode site for detecting seizure onset: Evidence from scalp, superficial and deep foramen ovale recordings

Clinical Neurophysiology, Volume 112, No. 2, Year 2001

Objectives: Some authors have recently stressed that the position of the tip of sphenoidal electrodes plays a crucial role in their efficacy in detecting ictal onset. An opportunity to test this hypothesis is provided by recordings from the most superficial contacts of foramen ovale (FO) electrode bundles because these contacts are located at the FO, in a position equivalent to that of optimally located sphenoidal electrodes. To simplify wording, recordings obtained by superficial FO electrodes will hereafter be called sphenoidal recordings, although they have not been obtained with standard sphenoidal electrodes. The sensitivities of simultaneous scalp and sphenoidal recordings for detecting ictal onset have been compared with each other, and with a 'gold standard' provided by simultaneous deep intracranial FO recordings from the mesial aspect of the temporal lobe. Methods: Three hundred and fourteen seizures obtained from 110 patients under telemetric presurgical assessment for temporal lobe epilepsy have been studied. Scalp electrodes included anterior temporal placements. All scalp electrodes were considered when identifying seizure onset but the anterior temporal electrodes were most frequently involved. Results: Ictal onset time at sphenoidal and scalp recordings: initial ictal changes appeared simultaneously in scalp and sphenoidal recordings in 123 seizures (39.2%). Initial changes occurred earlier in sphenoidal recordings in 63 seizures (20.1%), whereas they were seen earlier on the scalp in 76 seizures (24.2%). Artefacts prevented the comparison between sphenoidal and scalp recordings in 16 seizures (5.1%) and no ictal changes were seen on the scalp and/or sphenoidal recordings in 36 seizures (11.5%). In most of the 63 seizures where ictal changes appeared earlier in sphenoidal recordings, a delayed ipsilateral scalp onset was seen as the signal amplitude increased or scalp changes could be identified retrospectively on the scalp with an onset which appeared simultaneous and ipsilateral to the initial sphenoidal changes. Sphenoidal recordings supplied additional information when compared to scalp recordings in only 22 seizures (7%): in 5 seizures with artefacts on the scalp, in 6 seizures with no changes on the scalp and in 11 seizures with discrepant laterality at onset. Congruence in laterality with respect to deep intracraneal FO recordings: of the 61 seizures with unilateral onset on the scalp, onsets at sphenoidal recordings and deep FO electrodes were ipsilateral in most cases. In only 3 of these 61 seizures (4.9%), sphenoidal recordings lateralized ipsilateral to the deep FO electrodes in the presence of a contralateral onset on the scalp. In 14 among the 122 seizures (11.5%) with bilateral asymmetrical onset on the scalp, sphenoidal recordings lateralized seizure onset ipsilateral to the deep FO electrodes in the presence of a contralateral scalp onset. Thus, when compared with scalp EEG, sphenoidal recordings increased laterality congruence with respect to deep FO electrodes in 17 seizures (5.4%). Conclusions: Extracranial electrodes located next to the FO at the sphenoidal electrode site yield an improvement over suitable surface electrodes in the identification of ictal onset in only 5.4-7% of seizures. Such improvement derives from the fact that the low amplitude signals often seen at seizure onset may show higher amplitude on sphenoidal than on scalp recordings. © 2001 Elsevier Science Ireland Ltd.
Statistics
Citations: 59
Authors: 5
Affiliations: 3