Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

pharmacology, toxicology and pharmaceutics

Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro

Journal of Controlled Release, Volume 144, No. 2, Year 2010

Vaccine efficacy is strongly enhanced by antibody-mediated targeting of vaccine components to dendritic cells (DCs), which are professional antigen presenting cells. However, the options to link antigens or immune modulators to a single antibody are limited. Here, we engineered versatile nano- and micrometer-sized slow-release vaccine delivery vehicles that specifically target human DCs to overcome this limitation. The nano- (NPs) and microparticles (MPs), with diameters of approximately 200. nm and 2 μm, consist of a PLGA core coated with a polyethylene glycol-lipid layer carrying the humanized targeting antibody hD1, which does not interact with complement or Fc receptors and recognizes the human C-type lectin receptor DC-SIGN on DCs. We studied how these particles interact with human DCs and blood cells, as well as the kinetics of PLGA-encapsulated antigen degradation within DCs. Encapsulation of antigen resulted in almost 38% degradation for both NPs and MPs 6. days after particle ingestion by DCs, compared to 94% when nonencapsulated, soluble antigen was used. In contrast to the MPs, which were taken up rather nonspecifically, the NPs effectively targeted human DCs. Consequently, targeted delivery only improved antigen presentation of NPs and induced antigen-dependent T cell responses at 10-100 fold lower concentrations than nontargeted NPs. © 2010 Elsevier B.V.
Statistics
Citations: 239
Authors: 3
Affiliations: 3