Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

agricultural and biological sciences

Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency

Remote Sensing of Environment, Volume 112, No. 10, Year 2008

A deterministic approach for downscaling ∼ 40 km resolution Soil Moisture and Ocean Salinity (SMOS) observations is developed from 1 km resolution MODerate resolution Imaging Spectroradiometer (MODIS) data. To account for the lower soil moisture sensitivity of MODIS surface temperature compared to that of L-band brightness temperature, the disaggregation scale is fixed to 10 times the spatial resolution of MODIS thermal data (10 km). Four different analytic downscaling relationships are derived from MODIS and physically-based model predictions of soil evaporative efficiency. The four downscaling algorithms differ with regards to i) the assumed relationship (linear or nonlinear) between soil evaporative efficiency and near-surface soil moisture, and ii) the scale at which soil parameters are available (40 km or 10 km). The 1 km resolution airborne L-band brightness temperature from the National Airborne Field Experiment 2006 (NAFE'06) are used to generate a time series of eleven clear sky 40 km by 60 km near-surface soil moisture observations to represent SMOS pixels across the three-week experiment. The overall root mean square difference between downscaled and observed soil moisture varies between 1.4% v/v and 1.8% v/v depending on the downscaling algorithm used, with soil moisture values ranging from 0 to 15% v/v. The accuracy and robustness of the downscaling algorithms are discussed in terms of their assumptions and applicability to SMOS. © 2008 Elsevier Inc. All rights reserved.
Statistics
Citations: 188
Authors: 4
Affiliations: 2
Identifiers
Study Approach
Quantitative