Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

Antifouling pseudo-zwitterionic poly(vinylidene fluoride) membranes with efficient mixed-charge surface grafting via glow dielectric barrier discharge plasma-induced copolymerization

Journal of Membrane Science, Volume 516, Year 2016

This work reports on the glow dielectric barrier discharge (GDBD) plasma-induced surface grafting of poly(vinylidene fluoride) (PVDF) membranes with mixed-charge copolymers of [2-(methacryloyloxy)ethyl] trimethylammonium (TMA) and sulfopropyl methacrylate (SA). The aim is to investigate the antifouling properties and the hemocompatibility of this system. We first characterize the physico-chemical properties of the membranes. With SA alone in the coating solution, efficient grafting cannot be achieved as monomer is blown away during grafting. Membranes grafted with a mixture of SA and TMA, or TMA alone do not meet this problem and grafting density ranged between 0.29 and 0.41 mg/cm2. Bovine-serum-albumin and lysozyme adsorption tests (70% reduction) and Escherichia coli attachment test (annihilation of adhesion) unveil that pseudo-zwitterionic PVDF membranes are very efficient to reduce biofouling in static condition. Different fouling resistance behaviors are observed in dynamic conditions. Permeability of virgin membranes progressively decreases over the cycles, arising from a gradual pore blockage and irreversible fouling. All potential adsorption sites of pseudo-zwitterionic membrane and membrane with positive charge-bias are fouled after the first cycle, and flux recovery is maximal in the following cycles. This behavior is ascribed to the lack of homogeneity of the surface grafting. Finally, pseudo-zwitterionic membranes are hemocompatible (resistance to blood cells, low hemolysis activity). Provided a better tuning of surface uniformity, the method and system presented in this work are a promising approach to the new generation of antifouling mixed-charge membranes for water treatment or blood contacting devices.
Statistics
Citations: 79
Authors: 10
Affiliations: 3
Identifiers
Research Areas
Environmental