Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

medicine

Distinct anti-proliferative effects of herbal melanin on human acute monocytic leukemia thp-1 cells and embryonic kidney hek293 cells

BMC Complementary Medicine and Therapies, Volume 20, No. 1, Article 154, Year 2020

Background: Herbal melanin (HM) is a dark pigment extracted from the seed coat of Nigella sativa L. and known to exert biological effects via toll-like receptor 4 (TLR4). Recently, TLR4 was described as involved in natural programmed cell death (apoptosis). Tumor and embryonic cells are used as in vitro cellular models for drug and anti-cancer agent screening. To date, no cytotoxic studies have been reported of HM in TLR4-positive acute monocytic leukemia THP-1 cells compared to TLR4-negative human embryonic kidney HEK293 cells. Methods: We studied the anti-proliferative effects of several HM concentrations on THP-1 and HEK293 cells by evaluating cell viability using the CellTiter-Glo® luminescent assay, assessing the TLR4 expression level, determining the apoptotic status, and analyzing the cell cycle distribution using flow cytometry. Apoptotic pathways were investigated using mitochondrial transition pore opening, caspase activity assays and immunoblot technology. Results: Low HM concentrations did not affect THP-1 cell viability, but high HM concentrations (62.5–500 μg/ mL) did decrease THP-1 cell viability and induced G0 /G1 phase cell cycle arrest. Only at the highest concentration (500 μg/mL), HM slightly increased the TLR4 expression on the THP-1 cell surface, concomitantly upregulated TLR4 whole protein and gene expression, and induced apoptosis in THP-1 cells via activation of the extrinsic and intrinsic pathways. No change of apoptotic status was noticed in TLR4-negative HEK293 cells, although HM decreased HEK293 cell viability and induced cell growth arrest in the G2 phase. Conclusion: HM exerts distinct anti-proliferative effects on human acute monocytic leukemia and embryonic kidney cells mainly through cell cycle interference in a TLR4-independent manner and through apoptosis induction in a TLR4-dependent manner, as observed in only the THP-1 cells.

Statistics
Citations: 12
Authors: 12
Affiliations: 5
Identifiers
Research Areas
Cancer
Genetics And Genomics