Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

chemical engineering

Estimation of pure component properties part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contribution and group interactions

Fluid Phase Equilibria, Volume 269, No. 1-2, Year 2008

A group contribution method for the estimation of the normal boiling point of non-electrolyte organic compounds, which was published earlier, has been the basis for development of subsequent physical property methods. In this work, the model was extended to enable the prediction of vapor pressure data with special attention to the low-pressure region. The molecular structure of the compound and a reference point, usually the normal boiling point, are the only required inputs and enables the estimation of vapor pressure at other temperatures by group contribution. The structural group definitions are similar to those proposed earlier for the normal boiling point, with minor modifications having been made to improve the predictions. Structural groups were defined in a standardized form and fragmentation of the molecular structures was performed by an automatic procedure to eliminate any arbitrary assumptions. The new method is based on vapor pressure data for more than 1600 components. The results of the new method are compared to the Antoine correlative equation using parameters stored in the Dortmund Data Bank, as well as, the DIPPR vapor pressure correlations. The group contribution method has proven to be a good predictor, with accuracies comparable to the correlations. Moreover, because the regression of group contributions was performed for a large number of compounds, the results can in several cases be considered more reliable than those of the correlative models that were regressed to individual components only. The range of the method is usually from about the triple or melting point to a reduced temperature of 0.75-0.8. © 2008 Elsevier B.V. All rights reserved.
Statistics
Citations: 240
Authors: 3
Affiliations: 3