Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

earth and planetary sciences

1/f noise analysis for FAST H i intensity mapping drift-scan experiment

Monthly Notices of the Royal Astronomical Society, Volume 508, No. 2, Year 2021

We investigate the 1/f noise of the Five-hundred-meter Aperture Spherical Telescope (FAST) receiver system using drift-scan data from an intensity mapping pilot survey. All the 19 beams have 1/f fluctuations with similar structures. Both the temporal and the 2D power spectrum densities are estimated. The correlations directly seen in the time series data at low frequency f are associated with the sky signal, perhaps due to a coupling between the foreground and the system response. We use singular value decomposition (SVD) to subtract the foreground. By removing the strongest components, the measured 1/f noise power can be reduced significantly. With 20 modes subtraction, the knee frequency of the 1/f noise in a 10-MHz band is reduced to 1.8 × 10-3 Hz, well below the thermal noise over 500-s time-scale. The 2D power spectra show that the 1/f-type variations are restricted to a small region in the time-frequency space and the correlations in frequency can be suppressed with SVD modes subtraction. The residual 1/f noise after the SVD mode subtraction is uncorrelated in frequency, and a simple noise diode frequency-independent calibration of the receiver gain at 8-s interval does not affect the results. The 1/f noise can be important for H i intensity mapping, we estimate that the 1/f noise has a knee frequency (fk) ∼6 × 10-4 Hz, and time and frequency correlation spectral indices (α) ∼0.65, (β) ∼0.8 after the SVD subtraction of 30 modes. This can bias the H i power spectrum measurement by 10 per cent.
Statistics
Citations: 11
Authors: 11
Affiliations: 10
Identifiers
Study Design
Cross Sectional Study
Study Approach
Quantitative