Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

pharmacology, toxicology and pharmaceutics

Factors affecting liposomes particle size prepared by ethanol injection method

Research in Pharmaceutical Sciences, Volume 12, No. 5, Year 2017

Ethanol injection is one of the techniques frequently used to produce liposomes which favors both simplicity and safety. In this process, an ethanolic solution of lipids is rapidly injected into an aqueous medium through a needle, dispersing the phospholipids throughout the medium and promoting the vesicle formation. Being a critical parameter that determines the fate of liposome and its distribution, we studied different factors affecting the particle size of liposomes including different phospholipid (Phosal® 53 MCT) and cholesterol concentrations and the use of different types of non-ionic surfactants at fixed Phosal® 53 MCT concentration of 50 mg per formulation. Both Phosal® 53 MCT and cholesterol concentration had direct effect on liposomes particle size. Non-ionic surfactants produced liposomes of smaller particle size when compared to conventional liposomes formed using Phosal® 53 MCT 300 mg per formulation only, whereas this effect was diminished when higher Phosal® 53 MCT to cholesterol ratios were used that obviously increased liposomes size. Smaller liposomes sizes were obtained upon using non-ionic surfactants of lower hydrophilic/hydrophobic balance (HLB) as both Tween 80 and Cremophor RH 40 produced liposomes of smaller particle size compared to Poloxamer 407. The smallest liposomes particle size was successfully obtained in the formulation comprising 300 mg Phosal® MCT, 150 mg cholesterol and 50 mg Tween 80. Shaker Sherif 1 Department of Pharmaceutical Research, Faculty of Pharmacy and Drug Technology, Heliopolis University for Sustainable Development, 2834 El Horreya, Cairo Gardouh Ahmed 2 Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Suez Canal University, Ismailia Ghorab Mamdouh 3 Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Suez Canal University, Ismailia Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm. 2009;7:161-172. Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154:123-140. Gortzi O, Lalas S, Chinou I, Tsaknis J. Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes. Molecules. 2007;12: 932-945. Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973;298(4):1015-1019. Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. Drug Deliv. 2011; 2011: 591325. doi: 10.1155/2011/591325. Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20:228-243. Ma J, Guan R, Ri C, Liu M, Ye X, Jiang J. Response surface methodology for the optimization of lactoferrin nano-liposomes. Adv Food Sci Tec. 2012;4(5):249-256. Song J, Shi F, Zhang Z, Zhu F, Xue J, Tan X, et al. Formulation and evaluation of Celastrol-loaded liposomes. Molecules. 2011;16(9):7880-7892. Fricker G, Kromp T,Wendel A, Blume A, Zirkel J, Rebmann H, et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27(8):1469-1486. Wu YN, Xu YL, Sun WX. Preparation and particle size controlling of papain nanoliposomes. J Shanghai Jiaotong Univ Agric Sci. 2007;25:105-109. Taghizadeh SM, Bajgholi S. A new liposomal-drug- in-adhesive patch for transdermal delivery of sodium diclofenac. J Biomater Nanobiotechnol. 2011;2:576-581. Liang X, Mao G, Ng KY. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Colloid Interface Sci. 2004;278:53-62. Tseng LP, Liang HJ, Chung TW, Huang YY, Liu DZ, et al. Liposomes incorporated cholesterol for drug release triggered by magnetic field. J Med Biol Eng. 2007;27(1):29-34. Melzak KA, Melzak SA, Gizeli E, Toca-Herrera JL. Cholesterol organization in phosphatidylcholine liposomes: A surface plasmon resonance study. Materials. 2012;5:2306-2325. Duangjit S, Pamornpathomkul B, Opanasopit P, Rojanarata T, Obata Y, Takayama K, et al. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam- loaded liposomes. Int J Nanomedicine. 2014;9:2005-2017. Xia S, Xu S. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res Int. 2005;38:289-296. Khazaeli P, Pardakhty A, Shoorabi H.Caffeine-loaded niosomes: characterization and in vitro release studies. Drug Deliv. 2007;14(7):447-452. Akhilesh D, Bini KB, Kamath JV. Review on span 60 based non-ionic surfactant vesicles (Niosomes) as novel drug delivery. IJRPBS. 2012;3:1-12. Ali AM, Sarhan HA, Magdy T. Preparation and characterization of phenytoin sodium niosomes for enhanced closure of skin injuries.
Statistics
Citations: 112
Authors: 3
Affiliations: 2
Identifiers
Research Areas
Environmental
Food Security
Health System And Policy
Violence And Injury