Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

agricultural and biological sciences

Impacts of Soil and Water Conservation Practice on Soil Moisture in Debre Mewi and Sholit Watersheds, Abbay Basin, Ethiopia

Agriculture (Switzerland), Volume 12, No. 3, Article 417, Year 2022

Soil and water conservation (SWC) practices have been widely implemented to reduce surface runoff in the Debre Mewi watershed. However, studies on the issue have disproportionately focused on the lost or preserved soils, expressed in tons per hectare, while the impacts on the lost or preserved moisture were inadequately addressed. This study aimed to investigate the impacts of soil and water conservation practice on soil moisture in the Debre Mewi and Sholit watersheds, Abbay basin, Ethiopia. We compared soil moisture between the treated (Debre Mewi) and the untreated (Sholit) watersheds with SWCs, based on Sentinel-1A data and the field-measured soil moisture, Leaf Area Index (LAI), and water cloud model (WCM). Field-measurement was based on satellite-synchronized 63 soil moisture samples, systematically collected from the two treatment slope positions, two treatment positions, and two depths. We employed ANOVA to compare samples and discern patterns along space and time. The result indicated that the LAI, a predictor of crop yield, was higher in the SWC treated watershed, demonstrating the potential of conserving moisture for boosting crop production. In addition, the results reveal that the higher soil moisture was recorded on the grasslands of the treated watershed at a depth of 15–30 cm, while the lowest was from croplands and eucalyptus trees at 0–15 cm depth. A higher correlation was observed between the measured and estimated soil moisture across three stages of crop development. The soil moisture estimation using WCM from the Sentinel-1 satellite data gives promising results with good correlation (R2 = 0.69, 0.43 and 0.75, RMSE = 0.16, 2.24 and 0.02, and in Sholit (0.7539, 0.933, and 0.3673 and the RMSEs are 0.17%, 0.02%, and 1.02%) for different dates: August, September, and November 2020, respectively. We conclude that in the face of climate change-induced rainfall variability in tropical countries, predicted to elongate the dry spell during the cropping season, the accurate measurement of soil moistures with the mix of satellite and in-situ data could support rain-fed agriculture planning and assist in fine-tuning the climate adaptation measures at the local and regional scales.
Statistics
Citations: 4
Authors: 4
Affiliations: 2
Identifiers
Research Areas
Environmental
Study Locations
Ethiopia