Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

Mitochondrial ultrastructure and density in a primate model of persistent tardive dyskinesia

Life Sciences, Volume 66, No. 14, Year 2000

The use of neuroleptic drugs to treat schizophrenia is almost invariably associated with extrapyramidal movement disorders. One of these disorders, tardive dyskinesia (TD), can persist long after neuroleptic withdrawal suggesting that permanent neurological damage is produced. However, there appears to be no convincing pathology of TD and its pathogenesis remains unknown. Findings that neuroleptics interfere with normal mitochondrial function and produce mitochondrial ultrastructural changes in the basal ganglia of patients and animals suggest that mitochondrial dysfunction plays a role in TD. We have established a model for persistent TD in baboons that appears to involve compromised mitochondrial function. In this study, we evaluated two animals treated for 41 weeks with a derivative of haloperidol and two treated with vehicle only. Treatment was then withdrawn and the animals observed for a further 17-18 weeks. Treated animals developed abnormal orofacial signs that were consistent with TD. These symptoms persisted during the drug-free period. The animals were euthanased, the brains perfused-fixed then post-fixed in 4% paraformaldehyde and the caudate and putamen prepared for electron microscopy. Regardless of whether mitochondria were located in neural soma, excitatory terminals, gila or in non-somal neuropil there was no consistent difference either in size or number between treated and control animals. Thus, even if mitochondria in striatal neurons undergo ultrastructural alterations during neuroleptic therapy, these changes do not persist after drug withdrawal.
Statistics
Citations: 9
Authors: 4
Affiliations: 4
Research Areas
Mental Health