Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

Improvement in Bending Performance of Reinforced Concrete Beams Produced with Waste Lathe Scraps

Sustainability (Switzerland), Volume 14, No. 19, Article 12660, Year 2022

In this study, the impacts of different proportions of tension reinforcement and waste lathe scraps on the failure and bending behavior of reinforced concrete beams (RCBs) are clearly detected considering empirical tests. Firstly, material strength and consistency test and then ½ scaled beam test have been carried out. For this purpose, a total of 12 specimens were produced in the laboratory and then tested to examine the failure mechanism under flexure. Two variables have been selected in creating text matrix. These are the longitudinal tension reinforcement ratio in beams (three different level) and volumetric ratio of waste lathe scraps (four different level: 0%, 1%, 2% and 3%). The produced simply supported beams were subjected to a two-point bending test. To prevent shear failure, sufficient stirrups have been used. Thus, a change in the bending behavior was observed during each test. With the addition of 1%, 2% and 3% waste lathe scraps, compressive strength escalated by 11.2%, 21.7% and 32.5%, respectively, compared to concrete without waste. According to slump test results, as the waste lathe scraps proportion in the concrete mixture is increased, the concrete consistency diminishes. Apart from the material tests, the following results were obtained from the tests performed on the beams. It is detected that with the addition of lathe waste, the mechanical features of beams improved. It is observed that different proportions of tension reinforcement and waste lathe scraps had different failure and bending impacts on the RCBs. While there was no significant change in stiffness and strength, ductility increased considerably with the addition of lathe waste.
Statistics
Citations: 61
Authors: 6
Affiliations: 6
Identifiers
Study Design
Cohort Study