Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

engineering

A multilevel inverter for photovoltaic systems with fuzzy logic control

IEEE Transactions on Industrial Electronics, Volume 57, No. 12, Article 5422767, Year 2010

Converters for photovoltaic (PV) systems usually consist of two stages: a dc/dc booster and a pulsewidth modulated (PWM) inverter. This cascade of converters presents efficiency issues, interactions between its stages, and problems with the maximum power point tracking. Therefore, only part of the produced electrical energy is utilized. In this paper, the authors propose a single-phase H-bridge multilevel converter for PV systems governed by a new integrated fuzzy logic controller (FLC)/modulator. The novelties of the proposed system are the use of a fully FLC (not requiring any optimal PWM switching-angle generator and proportionalintegral controller) and the use of an H-bridge power-sharing algorithm. Most of the required signal processing is performed by a mixed-mode field-programmable gate array, resulting in a fully integrated System-on-Chip controller. The general architecture of the system and its main performance in a large spectrum of practical situations are presented and discussed. The proposed system offers improved performance over two-level inverters, particularly at lowmedium power. © 2010 IEEE.
Statistics
Citations: 447
Authors: 2
Affiliations: 3
Identifiers