Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

The antileukemic effect of xestoquinone, a marine-derived polycyclic quinone-type metabolite, is mediated through ros-induced inhibition of hsp-90

Molecules, Volume 26, No. 22, Article 7037, Year 2021

Xestoquinone is a polycyclic quinone-type metabolite with a reported antitumor effect. We tested the cytotoxic activity of xestoquinone on a series of hematological cancer cell lines. The antileukemic effect of xestoquinone was evaluated in vitro and in vivo. This marine metabolite sup-pressed the proliferation of Molt-4, K562, and Sup-T1 cells with IC50 values of 2.95 ± 0.21, 6.22 ± 0.21, and 8.58 ± 0.60 µM, respectively, as demonstrated by MTT assay. In the cell-free system, it inhibited the activity of topoisomerase I (Topo I) and II (Topo II) by 50% after treatment with 0.235 and 0.094 µM, respectively. The flow cytometric analysis indicated that the cytotoxic effect of xestoquinone was mediated through the induction of multiple apoptotic pathways in Molt-4 cells. The pretreatment of Molt-4 cells with N-acetyl cysteine (NAC) diminished the disruption of the mitochondrial membrane potential (MMP) and apoptosis, as well as retaining the expression of both Topo I and II. In the nude mice xenograft model, the administration of xestoquinone (1 µg/g) significantly attenuated tumor growth by 31.2% compared with the solvent control. Molecular docking, Western blotting, and thermal shift assay verified the catalytic inhibitory activity of xestoquinone by high binding affinity to HSP-90 and Topo I/II. Our findings indicated that xestoquinone targeted leukemia cancer cells through multiple pathways, suggesting its potential application as an antileukemic drug lead.
Statistics
Citations: 10
Authors: 10
Affiliations: 9
Identifiers
Research Areas
Cancer