Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

earth and planetary sciences

The discovery of γ-ray emission from the blazar RGBJ0710+591

Astrophysical Journal Letters, Volume 715, No. 1 PART 2, Year 2010

The high-frequency-peaked BL Lacertae object RGBJ0710+591 was observed in the very high-energy (VHE; E > 100GeV) wave band by the VERITAS array of atmospheric Cherenkov telescopes. The observations, taken between 2008 December and 2009 March and totaling 22.1 hr, yield the discovery of VHE gamma rays from the source. RGBJ0710+591 is detected at a statistical significance of 5.5 standard deviations (5.5σ) above the background, corresponding to an integral flux of (3.9 ± 0.8) × 10-12 cm-2 s-1 (3% of the Crab Nebula's flux) above 300GeV. The observed spectrum can be fit by a power law from 0.31 to 4.6TeV with a photon spectral index of 2.69 ± 0.26stat ± 0.20sys. These data are complemented by contemporaneous multiwavelength data from the Fermi Large Area Telescope, the Swift X-ray Telescope, the Swift Ultra-Violet and Optical Telescope, and the Michigan-Dartmouth-MIT observatory. Modeling the broadband spectral energy distribution (SED) with an equilibrium synchrotron self-Compton model yields a good statistical fit to the data. The addition of an external-Compton component to the model does not improve the fit nor brings the system closer to equipartition. The combined Fermi and VERITAS data constrain the properties of the high-energy emission component of the source over 4 orders of magnitude and give measurements of the rising and falling sections of the SED. © 2010 The American Astronomical Society. All rights reserved.

Statistics
Citations: 80
Authors: 219
Affiliations: 75
Research Areas
Environmental