Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

earth and planetary sciences

Characterization of Local Climate and Its Impact on Faba Bean (Vicia faba L.) Yield in Central Ethiopia

Advances in Meteorology, Volume 2022, Article 8759596, Year 2022

Climate change is a major threat to agricultural production and undermines the efforts to achieve sustainable development goals in poor countries such as Ethiopia that have climate-sensitive economies. The objective of this study was to assess characterization of local climate and its impact on productivity faba bean (Vicia faba L.) varieties (Gora and Tumsa) productivity in Welmera watershed area, central Ethiopia. Historical climate (1988-2017) and eight years of crop yield data were obtained from National Meteorological Agency of Ethiopia and Holeta Agricultural Research Center. Trend, variability, correlation, and regression analyses were carried out to characterize the climate of the area and establish association between faba bean productivity and climate change. The area received mean annual rainfall of 970 mm with SD of 145.6 and coefficient of variation (CV %) of 15%. The earliest and latest onset of rainfall were April 1 (92 DOY) and July 5 (187 DOY), whereas, the end date of rainy season was on September 2 (246 DOY) and October 31 (305 DOY), respectively. The average length of the growing period was 119 days, with a CV% of 35.2%. The probability of dry spell less than 7 days was high (>80%) until the last decade of May (151 DOY); however, the probability sharply declined and reached 0% on the first decade of July (192 DOY). Kiremt (long rainy season that occurs from June to September) and belg (short rainy season that falls from February to April/May) rainfall had increasing trends at a rate of 4.7 mm and 2.32 mm/year, respectively. The annual maximum temperature showed increasing trend at a rate of 0.06°C per year and by a factor of 0.34°C, which is not statistically significant. The year 2014 was exceptionally drought year while 1988 was wettest year. Kiremt (JJAS) start of rain and rainy day had strong correlation and negative impact on Gora yield with (r =-0.407 and-0.369), respectively. The findings suggests large variation in rainfall and temperature in the study area which constraints faba bean production. Investment on agricultural sector to enhance farmer's adaptation capacity is essential to reduce the adverse impacts of climate change and variability on faba bean yield. More research that combines household panel data with long-Term climate data is necessary to better understand climate and its impact on faba bean yield.
Statistics
Citations: 3
Authors: 3
Affiliations: 2
Identifiers
Research Areas
Environmental
Study Locations
Ethiopia