Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

earth and planetary sciences

Impact of organic pollutants from urban slum informal settlements on sustainable development goals and river sediment quality, Nairobi, Kenya, Africa

Applied Geochemistry, Volume 146, Article 105468, Year 2022

The UN Sustainable Development Goals highlight the myriad of socio-economic and environmental challenges occurring as a result of anthropogenic chemical pollution. Urban sediments from informal settlements (slums) on the Nairobi, Ngong and Mathare Rivers (n = 25), were evaluated for sediment quality. Microtox bioassay identified 8 sites as toxic, 9 as moderately toxic and 8 as non-toxic. Slum sediments were characterised by high total organic carbon and Rock-Eval pyrolysis revealed bound carbon from a mix of raw sewage and domestic refuse. Sediments from Kiambio, Kibera, Mathare and Kawangware slums contained high coprostanol at 55–298 μg/g and epicoprostanol at 3.2–21.7 μg/g confirming appreciable incorporation of untreated human faeces. Hormones, antianalgeiscs, antiinflamatories, antiepileptics and antibiotics most affected Mathare > Kiambio > Kibera > Mukuru > Kawangware slums. Carbamazepine, ibuprofen, diclofenac and acetaminophen concentrations are amongst the highest reported in Kenyan river sediments and were positively correlated with faecal steroids (sewage). Common persistent organic pollutants, such as organochlorine insecticides ΣDDT 1–59 μg/kg, mean 21.2 μg/kg, Σ16PAH 182–2218 μg/kg, mean 822 μg/kg and Σ30 PCB 3.1–157.1 μg/kg, mean of 21.4 μg/kg were between probable effect likely and unlikely sediment quality guidelines (SQG). PAH source ratios and parent to alkyl-PAH distribution suggested vehicle exhaust, power stations (heavy oil), kerosene (cooking oil) and other pollution sources. Trace metal concentrations As, Cd, Cr, Hg and Ni were below SQG whereas Pb exceeded the SQG. This multi-contaminant characterisation of sediment quality in Nairobi supports the development and implementation of policies to improve urban infrastructure to protect ecological and human health. It demonstrates the need for environmental geochemists to engage in the science-policy interface associated with both global and national development frameworks, with particular reference to the Sustainable Development Goals, New Urban Agenda, and Kenya's Vision 2030.
Statistics
Citations: 10
Authors: 10
Affiliations: 2
Identifiers
Research Areas
Environmental
Health System And Policy
Study Locations
Kenya