Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

agricultural and biological sciences

Artificial Intelligence for the Evaluation of Operational Parameters Influencing Nitrification and Nitrifiers in an Activated Sludge Process

Microbial Ecology, Volume 72, No. 1, Year 2016

Nitrification at a full-scale activated sludge plant treating municipal wastewater was monitored over a period of 237 days. A combination of fluorescent in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (qPCR) were used for identifying and quantifying the dominant nitrifiers in the plant. Adaptive neuro-fuzzy inference system (ANFIS), Pearson’s correlation coefficient, and quadratic models were employed in evaluating the plant operational conditions that influence the nitrification performance. The ammonia-oxidizing bacteria (AOB) abundance was within the range of 1.55 × 108–1.65 × 1010 copies L−1, while Nitrobacter spp. and Nitrospira spp. were 9.32 × 109–1.40 × 1011 copies L−1 and 2.39 × 109–3.76 × 1010 copies L−1, respectively. Specific nitrification rate (qN) was significantly affected by temperature (r 0.726, p 0.002), hydraulic retention time (HRT) (r −0.651, p 0.009), and ammonia loading rate (ALR) (r 0.571, p 0.026). Additionally, AOB was considerably influenced by HRT (r −0.741, p 0.002) and temperature (r 0.517, p 0.048), while HRT negatively impacted Nitrospira spp. (r −0.627, p 0.012). A quadratic combination of HRT and food-to-microorganism (F/M) ratio also impacted qN (r2 0.50), AOB (r2 0.61), and Nitrospira spp. (r2 0.72), while Nitrobacter spp. was considerably influenced by a polynomial function of F/M ratio and temperature (r2 0.49). The study demonstrated that ANFIS could be used as a tool to describe the factors influencing nitrification process at full-scale wastewater treatment plants.
Statistics
Citations: 16
Authors: 4
Affiliations: 1
Identifiers
Research Areas
Environmental
Food Security
Genetics And Genomics
Study Approach
Quantitative