Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

In-house fabrication of macro-porous biopolymeric hydrogel and its deployment for adsorptive remediation of lead and cadmium from water matrices

Environmental Research, Volume 214, Article 113790, Year 2022

A novel adsorbent was prepared by blending chitosan (CS) and acrylic acid (AA) while using formaldehyde as a cross linker in the form of hydrogel beads. The adsorption properties of these hydrogel beads for the removal of toxic metal ions (Pb2+ and Cd2+) from aqueous solutions were evaluated. The hydrogel beads have a 3D macro-porous structure whose –NH2 groups were considered to be the dominant binding specie for Cd and Pb ions. The equilibrium adsorption capacity (qe) of beads was significantly affected by the mass ratio of sorbent and sorbate. The percentage removal of Cd and Pb ions was observed to be enhanced with the increase in sorbate concentration. The hydrogel beads maintained good adsorption properties at adsorption–desorption equilibrium. The Langmuir and Freundlich models were used to elaborate the isotherms as well as isotherm constants. Adsorption isothermal data is well explained by the Freundlich model. The data of experimental kinetics is interrelated with the second-order kinetic model, which showed that the chemical sorption phenomenon is the rate limiting step. The results of intraparticle diffusion model described the adsorption process occurred on a porous substance that proved chitosan/Formaldehyde beads to be the favorable adsorbent.
Statistics
Citations: 9
Authors: 9
Affiliations: 5
Identifiers
Research Areas
Environmental