Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

environmental science

Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization

Journal of Hydrology, Volume 589, Article 125133, Year 2020

Rainfall and runoff are considered the main components in the hydrological cycle. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains a problematic task for engineers. Several studies have been carried out to develop models to accurately predict the changes in runoff from rainfall. However, these models have limitations in terms of accuracy and complexity when large numbers of parameters are needed. Therefore, recently, with the advancement of data-driven techniques, a vast number of hydrologists have adopted models to predict changes in runoff. However, data-driven models still encounter several limitations related to hyperparameter optimization and overfitting. Hence, there is a need to improve these models to overcome these limitations. In this study, data-driven techniques such as a Multi-Layer Perceptron (MLP) neural network and Least Squares Support Vector Machine (LSSVM) are integrated with an advanced nature-inspired optimizer, namely, Harris Hawks Optimization (HHO) to model the rainfall-runoff relationship. Five different scenarios will be examined based on the autocorrelation function (ACF), cross-correlation function (CCF) and partial autocorrelation function (PACF). Finally, for comprehensive analysis, the performance of the proposed model will then be compared with integrated data-driven techniques with particle swarm optimization (PSO). The results revealed that all the augmented models with HHO outperformed other integrated models with PSO in predicting the changes in runoff. In addition, a high level of accuracy in predicting runoff values was achieved when HHO was integrated with LSSVM.
Statistics
Citations: 89
Authors: 7
Affiliations: 8