Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

energy

Consecutive charging and discharging of a PCM-based plate heat exchanger with zigzag configuration

Applied Thermal Engineering, Volume 193, Article 116970, Year 2021

Due to the remarkable energy savings, isothermal nature of the operation and low costs, energy storage with phase-change materials (PCMs) is a reliable technology for filling the gap between energy supply and demand. In this paper, an attempt has been made to modify the storage functionality of PCM in a plate type heat exchanger with zigzag configuration. A two-dimensional, time-dependent simulation model for the PCM phase transition during the charging and discharging modes has been developed and validated via earlier related findings. The effects of zigzag angle orientation, inlet flowrate and mean temperature of the heat transfer fluid (HTF) are thoroughly studied and revealed. Results show that increasing the angle of zigzag orientation has no noticeable impact on the development of phase transition during the early stages of operation. However, this effect becomes more noticeable and almost leads to faster storage/retrieval rates as time further elapses. It is found that the system with the zigzag angle of 60° augments the storage rate by 32.6% compared with the system of 30° zigzag angle. Also, higher HTF temperature and/or higher Reynold number result in faster phase-transition rates during both parts of the energy charging-discharging cycle.
Statistics
Citations: 41
Authors: 6
Affiliations: 6