Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

Inhibition of Filamentous Thermosensitive Mutant-Z Protein in Bacillus subtilis by Cyanobacterial Bioactive Compounds

Molecules, Volume 27, No. 6, Article 1907, Year 2022

Antibiotic resistance is one of the major growing concerns for public health. Conventional antibiotics act on a few predefined targets and, with time, several bacteria have developed resistance against a large number of antibiotics. The WHO has suggested that antibiotic resistance is at a crisis stage and identification of new antibiotics and targets could be the only approach to bridge the gap. Filamentous Temperature Sensitive-Mutant Z (Fts-Z) is one of the promising and less explored antibiotic targets. It is a highly conserved protein and plays a key role in bacterial cell division by introducing a cytokinetic Z-ring formation. In the present article, the potential of over 165 cyanobacterial compounds with reported antibiotic activity against the catalytic core domain in the Fts-Z protein of the Bacillus subtilis was studied. The identified cyanobacterial compounds were screened using the GLIDE module of Maestro v-2019-2 followed by 100-ns molecular dynamics (MD) simulation. Ranking of the potential compound was performed using dock score and MMGBSA based free energy. The study reported that the docking score of aphanorphine (−6.010 Kcalmol−1 ) and alpha-dimorphecolic acid (ADMA) (−6.574 Kcalmol−1) showed significant role with respect to the reported potential inhibitor PC190723 (−4.135 Kcalmol−1 ). A 100 ns MD simulation infers that Fts-Z ADMA complex has a stable conformation throughout the progress of the simulation. Both the compounds, i.e., ADMA and Aphanorphine, were further considered for In-vitro validation by performing anti-bacterial studies against B. subtilis by agar well diffusion method. The results obtained through In-vitro studies confirm that ADMA, a small molecule of cyanobacterial origin, is a potential compound with an antibacterial activity that may act by inhibiting the novel target Fts-Z and could be a great drug candidate for antibiotic development.
Statistics
Citations: 14
Authors: 14
Affiliations: 8
Identifiers