Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

computer science

Numerical investigation of thermal pulsating alumina/water nanofluid flow over three different cross-sectional channel

International Journal of Numerical Methods for Heat and Fluid Flow, Volume 30, No. 7, Year 2020

Purpose: The purpose of this study is to investigate the pulsating flow in a three-dimensional channel. Channel flow is laminar and turbulent. After validation, the effect of different channel cross-sectional geometries (circular, hexagonal and triangular) with the pulsating flow are investigated. For this purpose, the alumina nanofluid was considered as a working fluid with different volume percentages (0 per cent [pure water], 3 per cent and 5 per cent). Design/methodology/approach: In this study, the pulsatile flow was investigated in a three-dimensional channel. Channel flow is laminar and turbulent. Findings: The results show that the fluid temperature decreases by increasing the volume percentage of particles of Al2O3; this is because of the fact that the input energy through the wall boundary is a constant value and indicates that with increasing the volume percentage, the fluid can save more energy at a constant temperature. And by adding Al2O3 nanofluid, thermal performance improves in channels, but it should be considered that the use of nanofluid causes a pressure drop in the channel. Originality/value: Alumina/water nanofluid with the pulsating flow was investigated and compared in three different cross-sectional channel geometries (circular, hexagonal and triangular). The effect of different volume percentages (0 per cent [pure water], 3 per cent and 5 per cent) of Al2O3 nanofluid on temperature, velocity and pressure are studied.
Statistics
Citations: 25
Authors: 4
Affiliations: 3
Identifiers
Research Areas
Environmental
Study Design
Cross Sectional Study