Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

agricultural and biological sciences

Plant dispersal by teal (Anas crecca) in the Camargue: Duck guts are more important than their feet

Freshwater Biology, Volume 55, No. 6, Year 2010

Migratory waterbirds are major vectors for the dispersal of aquatic plants. However, quantitative field studies of the frequency of transport are scarce, and the relative importance of internal and external transport remains unclear. We quantified and compared the rates of internal and external transport of aquatic plant propagules by teal (Anas crecca) in the Camargue (southern France), inspecting the lower gut contents of birds that had been shot (n = 366) and washing birds that had been live-trapped (n = 68) during the winters of 2006-2007 and 2007-2008. Intact propagules (n = 902) of 21 plant taxa were recorded in the rectum of teal, of which 16 germinated or were shown to be viable. Intact propagules were recorded in the rectum of 20% of teal, with up to 171 propagules per individual bird. Chara oogonia were most abundant (60% of intact propagules), suggesting that small size favours internal transport. Eleocharis palustris, Juncus spp. and Potamogeton pusillus (17, 7 and 6% of intact propagules, respectively) were also very abundant. Intact propagules (n = 12) of 10 plant taxa were found on the outside of live teal, and four of these taxa later germinated. Intact propagules were found on 18% of teal. No teal was found to carry more than one propagule externally. There was no difference in size between propagules transported internally and externally. Teal are major dispersers of plants within the Camargue, despite being highly granivorous. Contrary to widespread assumptions in the literature, endozoochory by ducks appears to be a much more important mode of dispersal for aquatic plants than exozoochory. We found no evidence of changes in the probability of plant propagule dispersal at a landscape scale over the course of the winter, so propagule production and zoochory appear to be decoupled over time in aquatic systems. © 2009 Blackwell Publishing Ltd.
Statistics
Citations: 92
Authors: 5
Affiliations: 4
Study Approach
Quantitative