Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

earth and planetary sciences

The VLA-COSMOS 3 GHz Large Project: Average radio spectral energy distribution of highly star-forming galaxies

Astronomy and Astrophysics, Volume 621, Article A139, Year 2019

We construct the average radio spectral energy distribution (SED) of highly star-forming galaxies (HSFGs) up to z ∼ 4. Infrared and radio luminosities are bound by a tight correlation that is defined by the so-called q parameter. This infrared-radio correlation provides the basis for the use of radio luminosity as a star-formation tracer. Recent stacking and survival analysis studies find q to be decreasing with increasing redshift. It was pointed out that a possible cause of the redshift trend could be the computation of rest-frame radio luminosity via a single power-law assumption of the star-forming galaxies' (SFGs) SED. To test this, we constrained the shape of the radio SED of a sample of HSFGs. To achieve a broad rest-frame frequency range, we combined previously published Very Large Array observations of the COSMOS field at 1:4 GHz and 3 GHz with unpublished Giant Meterwave Radio Telescope (GMRT) observations at 325MHz and 610MHz by employing survival analysis to account for non-detections in the GMRT maps. We selected a sample of HSFGs in a broad redshift range (z ϵ [0:3; 4]; SFR ≥ 100 M yr-1) and constructed the average radio SED. By fitting a broken power-law, we find that the spectral index changes from α1 = 0:42-0:06 below a rest-frame frequency of 4:3 GHz to α2 = 0:94 ± 0:06 above 4:3 GHz. Our results are in line with previous low-redshift studies of HSFGs ( SFR > 10 M yr-1) that show the SED of HSFGs to differ from the SED found for normal SFGs ( SFR < 10 M yr-1). The difference is mainly in a steeper spectrum around 10 GHz, which could indicate a smaller fraction of thermal free-free emission. Finally, we also discuss the impact of applying this broken power-law SED in place of a simple power-law in K-corrections of HSFGs and a typical radio SED for normal SFGs drawn from the literature. We find that the shape of the radio SED is unlikely to be the root cause of the q-z trend in SFGs.
Statistics
Citations: 16
Authors: 10
Affiliations: 6
Identifiers
Research Areas
Environmental