Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

materials science

Development of novel biomass hybrid aerogel supported composite phase change materials with improved light-thermal conversion and thermal energy storage capacity

Advanced Composites and Hybrid Materials, Year 2022

Phase change materials (PCMs) have shown great application potential in sustainable energy utilization. The green preparation and efficient application are both focus of PCMs in research. In this paper, without any carbonized process under high temperature, bio-based sodium alginate (SA) and different content of ZrP nanosheets modified by PDA were used to prepare intrinsic framework materials (SA@ZrP) with sensitive lighting absorbance. Polyethylene glycol (PEG)/SA@ZrP with shape stability was fabricated via the vacuum impregnation method. Among them, CPCM5 (SA:PDA@ZrP = 50:50) exhibited excellent thermal storage and cycling stability. Compared with CPCM0 (SA:PDA@ZrP = 100:0), the melting enthalpy (159.8 J/g) and freezing enthalpy (159.3 J/g) of CPCM5 increased 16.8% and 15.4%, respectively. After 100 thermal cycles, there was no significant difference in the latent heat during meting (159.02 J/g) and freezing (157.36 J/g) process. Superior light-thermal performance of CPCM5 also performed during photothermal conversion. Therefore, with the environmentally friendly and low-cost prepared process while excellent thermal properties, PEG/SA@ZrP shows widen application prospects in the photothermal storage and conversion field. Graphical abstract: [Figure not available: see fulltext.]
Statistics
Citations: 47
Authors: 9
Affiliations: 7
Identifiers