Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

computer science

Sustainability assessment associated with surface roughness and power consumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel

International Journal of Advanced Manufacturing Technology, Volume 105, No. 1-4, Year 2019

The constant pressure on the manufacturers to innovate and implement sustainable processes has triggered researching on machining with low carbon footprint, minimum energy consumption by machine tools, and improved products at the lowest cost—this is exactly done in this paper. Herein, the advanced cooling lubrication, i.e., nanofluid assistance, besides dry and flood cooling, during machining has been experimented, and used as the basis for sustainability assessment. This assessment is carried out in respect of surface quality and power consumption as well as the impact on environment, cost of machining, management of waste, and finally the safety and health issues of operators. For a better sustainability, a systematic optimization has been performed. In addition, the solution for an improved machinability has been proposed along with the statistically verified mathematical models of machining responses. Results showed that the nanofluid minimum quantity lubrication showed the most sustainable performance with a total weighted sustainability index 0.7, and it caused the minimum surface roughness and power consumption. The highest desirable (desirability = 0.9050) optimum results are the cutting speed of 116 m/min, depth of cut 0.25 mm, and feed rate of 0.06 mm/rev. Furthermore, a lower feed rate is suggested for better surface quality while for reduced power consumption the lower control factors are better.
Statistics
Citations: 127
Authors: 7
Affiliations: 6
Identifiers
Research Areas
Environmental