Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

engineering

Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater

Water Research, Volume 169, Article 115281, Year 2020

The predatory bacterium, Bdellovibrio bacteriovorus, was applied as a biological pre-treatment to solar disinfection and solar photocatalytic disinfection for rainwater treatment. The photocatalyst used was immobilised titanium-dioxide reduced graphene oxide. The pre-treatment followed by solar photocatalysis for 120 min under natural sunlight reduced the viable counts of Klebsiella pneumoniae from 2.00 × 109 colony forming units (CFU)/mL to below the detection limit (BDL) (<1 CFU/100 μL). Correspondingly, ethidium monoazide bromide quantitative PCR analysis indicated a high total log reduction in K. pneumoniae gene copies (GC)/mL (5.85 logs after solar photocatalysis for 240 min). In contrast, solar disinfection and solar photocatalysis without the biological pre-treatment were more effective for Enterococcus faecium disinfection as the viable counts of E. faecium were reduced by 8.00 logs (from 1.00 × 108 CFU/mL to BDL) and the gene copies were reduced by ∼3.39 logs (from 2.09 × 106 GC/mL to ∼9.00 × 102 GC/mL) after 240 min of treatment. Predatory bacteria can be applied as a pre-treatment to solar disinfection and solar photocatalytic treatment to enhance the removal efficiency of Gram-negative bacteria, which is crucial for the development of a targeted water treatment approach.

Statistics
Citations: 8
Authors: 8
Affiliations: 4
Identifiers
Research Areas
Environmental
Genetics And Genomics
Study Approach
Quantitative