Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

agricultural and biological sciences

Impacts of selection for Spike Length on heat stress tolerance in bread wheat (Triticum aestivum L.)

Plant Breeding and Biotechnology, Volume 7, No. 2, Year 2019

Two consecutive cycles of selection were imposed on five F2 populations of bread wheat. The first cycle was a divergent selection for spike length conducted in favorable environment (optimal sowing date) and the response was measured under favorable and heat stress conditions of a late sowing date. Positive responses to selection for longer spikes were obtained under favorable (13.43%) heat stress (8.66%) conditions, whereas the responses for shorter spikes were 2.24 and 5.02% in the two environments, respectively. The realized heritability of spike length was greater under favorable conditions (0.25-0.56) than under heat stress (0.18- 0.41). Concurrent positive responses to selection for longer spikes were obtained in grain yield per spike under favorable (25.35%) and heat stress (13.65%) environments. Selection for greater number of grains per spike imposed on F3 plants selected for spike length under heat stress resulted in significant responses (14.65%). Selection for greater number of grains per spike resulted in correlated responses in grain yield per spike (17.64%). The concurrent positive responses produced in spike length in F4 with selection for number of grains per spike (averaged 9.20%) was almost equal to that produced by the direct selection in F3 (8.66%), indicating that selection advance effected in F3 has been maintained in F4. High F4/F3 regression was obtained for spike length under heat stress (b = 0.85 ± 0.07), indicating high heritability. In conclusion, phenotypic selection for longer spikes under heat stress followed by a cycle of selection for number of grains per spike was capable of improving heat tolerance in wheat.
Statistics
Citations: 5
Authors: 4
Affiliations: 1
Identifiers