Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

medicine

Transient outward current (I to) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome

Heart Rhythm, Volume 8, No. 7, Year 2011

Background: Brugada syndrome (BrS) is a sudden death-predisposing genetic condition characterized electrocardiographically by ST segment elevation in the leads V 1-V 3. Given the prominent role of the transient outward current (I to) in BrS pathogenesis, we hypothesized that rare gain-of-function mutations in KCND3 may serve as a pathogenic substrate for BrS. Methods: Comprehensive mutational analysis of KCND3-encoded Kv4.3 (I to) was conducted using polymerase chain reaction, denaturing high performance liquid chromatography, and direct sequencing of DNA derived from 86 unrelated BrS1-8 genotype-negative BrS patients. DNA from 780 healthy individuals was examined to assess allelic frequency for nonsynonymous variants. Putative BrS-associated Kv4.3 mutations were engineered and coexpressed with wild-type KChIP2 in HEK293 cells. Wild-type and mutant I to ion currents were recorded using whole-cell patch clamp. Results: Two BrS1-8 genotype-negative cases possessed novel Kv4.3 missense mutations. Both Kv4.3-L450F and Kv4.3-G600R were absent in 1,560 reference alleles and involved residues highly conserved across species. Both Kv4.3-L450F and Kv4.3-G600R demonstrated a gain-of-function phenotype, increasing peak I to current density by 146.2% (n = 15, P <.05) and 50.4% (n = 15, P <.05), respectively. Simulations using a Luo-Rudy II action potential (AP) model demonstrated the stable loss of the AP dome as a result of the increased I to maximal conductance associated with the heterozygous expression of either L450F or G600R. Conclusions: These findings provide the first molecular and functional evidence implicating novel KCND3 gain-of-function mutations in the pathogenesis and phenotypic expression of BrS, with the potential for a lethal arrhythmia being precipitated by a genetically enhanced I to current gradient within the right ventricle where KCND3 expression is the highest.
Statistics
Citations: 231
Authors: 10
Affiliations: 8
Identifiers
Research Areas
Genetics And Genomics