Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

physics and astronomy

Proton spin structure and generalized polarizabilities in the strong quantum chromodynamics regime

Nature Physics, Volume 18, No. 12, Year 2022

The strong interaction is not well understood at low energies or for interactions with low momentum transfer. Chiral perturbation theory gives testable predictions for the nucleonic generalized polarizabilities, which are fundamental quantities describing the nucleon’s response to an external field. We report a measurement of the proton’s generalized spin polarizabilities extracted with a polarized electron beam and a polarized solid ammonia target in the region where chiral perturbation theory is expected to be valid. The investigated structure function g2 characterizes the internal spin structure of the proton. From its moments, we extract the longitudinal–transverse spin polarizability δLT and twist-3 matrix element and polarizability d2¯. Our results provide discriminating power between existing chiral perturbation theory calculations and will help provide a better understanding of this strong quantum chromodynamics regime.

Statistics
Citations: 98
Authors: 98
Affiliations: 37
Identifiers
Study Design
Cohort Study