Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

agricultural and biological sciences

Phylogenetic analysis of the plastid inverted repeat for 244 species: Insights into deeper-level Angiosperm relationships from a long, slowly evolving sequence region

International Journal of Plant Sciences, Volume 172, No. 4, Year 2011

Recent plastid phylogenomic studies have helped clarify the backbone phylogeny of angiosperms. However, the relatively limited taxon sampling in these studies has precluded strongly supported resolution of some regions of angiosperm phylogeny. Other recent work has suggested that the 25,000-bp plastid inverted repeat (IR) region may be a valuable source of characters for resolving these remaining problematic nodes. Consequently, we aligned all available angiosperm IR sequences to produce a matrix of 24,702 aligned bases for 246 accessions, including 36 new accessions. Maximum likelihood analyses of the complete data set yielded a generally well-supported topology that is highly congruent with those of recent plastid phylogenomic analyses. However, reducing taxon sampling to match a recent 83-gene plastid analysis resulted in significant changes in bootstrap support at some nodes. Notably, IR analyses resolved Pentapetalae into three wellsupported clades: (1) superasterids (comprising Santalales, Caryophyllales, Berberidopsidales, and Asteridae), (2) superrosids (comprising Vitaceae, Saxifragales, and Rosidae), and (3) Dilleniaceae. These results provide important new evidence for a stable, well-supported phylogenetic framework for angiosperms and demonstrate the utility of IR data for resolving the deeper levels of angiosperm phylogeny. They also reiterate the importance of carefully considering taxon sampling in phylogenomic studies. © 2011 by The University of Chicago. All rights reserved.
Statistics
Citations: 82
Authors: 17
Affiliations: 8
Identifiers
Research Areas
Genetics And Genomics