Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

engineering

Spatial optical transceiver system-based key solution for high data rates in measured index multimode optical fibers for indoor applications

Journal of Optical Communications, Year 2020

This study has simulated the spatial optical transceiver system based on measured index multimode optical plastic fibers channel with 1 Tb/s in 1.5 km distance. These plastic optical fibers are simply step index polycarbonate, step index polystyrene, step index polymethylmethacrylate, graded index polymethylmethacrylate and graded index cyclic transparent optical fiber (GI-CYTOP). Maximum Q-factor, optical signal power at optical fiber channel, receiver sensitivity, and coupling coefficient for sample of modes are measured based on GI-CYTOP fiber for the comparison between the previous model and the proposed model. This study clarified the enhancement of both maximum Q-factor and receiver sensitivity even though at high signal losses. The optimized Q-factor and receiver sensitivity are obtained for various plastic optical fiber channels. Power intensity level of dominant mode-based GI-CYTOP fiber channel is measured. The proposed model has presented better performance based on GI-CYTOP fiber channel in maximum Q-factor, which is within the percentage ratio ranging from 45.65 to 53.26%, optical signal power is within the percentage ratio ranging from 32.87 to 44.77%, and receiver sensitivity is within the percentage ratio ranging from 6.3 to 12.26% than the previous model at transmission distance ranges from 500 to 1500 m and bit rate of 2.5 Gb/s. GI-CYTOP fiber clarified better performance in maximum Q-factor and receiver sensitivity response better than other plastic optical fibers channels.
Statistics
Citations: 70
Authors: 5
Affiliations: 5
Identifiers
Research Areas
Infectious Diseases