Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

Enhancement of tumor radioresponse in vivo by gemcitabine

Cancer Research, Volume 59, No. 1, Year 1999

Gemcitabine, 2'2'-difluoro-2'-deoxycytidine, is an inhibitor of DNA synthesis and has been shown previously in vitro and in vivo to enhance the cytotoxic activity of radiation as well as some chemotherapeutic agents. Because gemcitabine has shown clinical activity on its own in several solid tumors traditionally treated with radiotherapy, it was of interest to optimize the combination of gemcitabine and radiation. To determine the optimal gemcitabine dose to combine with irradiation and to determine the effect of gemcitabine on tumor growth, mice bearing SA-NH tumors were treated with 2.5 to 600 mg/kg gemcitabine, and subsequent tumor growth was determined. At low doses, gemcitabine induced transient growth delay, whereas higher doses showed both cytotoxic and cytostatic activity. Flow cytometric, histological, and mitotic analyses of irradiated tumors showed that gemcitabine induced a dose-dependent inhibition of DNA synthesis and induction of apoptosis of cells in S phase. DNA synthesis recovered in cells at the G1-S boundary of the cell cycle in a dose-dependent manner, and a parasynchronous movement of cells through the cell cycle ensued. To determine the optimal schedule for gemcitabine administration in relation to irradiation, tumor-bearing mice were given a single 50 mg/kg dose of gemcitabine at various times before or after irradiation. Gemcitabine enhanced radioresponse in a time-dependent fashion. The highest enhancement factors for tumor growth delay (1.68-2.03) were observed when gemcitabine was administered 24-60 h before irradiation. Although gemcitabine reduced the radiation tumor control dose at all administration times used, the greatest enhancement of tumor radiocurability occurred when gemcitabine was administered 24 h before irradiation (dose modification factor of 1.54). Moreover, gemcitabine decreased the lung metastatic rate in mice with local tumor control from 73% in mice receiving radiation alone to 40% in mice receiving the combination (all combination times included). These results suggest that gemcitabine has strong radioenhancing properties and that the greatest interaction occurs when gemcitabine administration precedes irradiation by 24-72 h. Preliminary studies indicate that normal tissues recover more quickly than tumor tissues from gemcitabine treatment; thus, optimized scheduling of gemcitabine and irradiation may serve to improve the therapeutic ratio of the combination.
Statistics
Citations: 8
Authors: 8
Affiliations: 3
Identifiers
ISSN: 00085472
Research Areas
Cancer
Genetics And Genomics