Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

Molecular cloning, distribution and pharmacological characterization of a novel gonadotropin-releasing hormone ([Trp8] GnRH) in frog brain

Molecular and Cellular Endocrinology, Volume 164, No. 1-2, Year 2000

To date nine structural variants of GnRH have been identified in vertebrates and two additional forms have been isolated from a tunicate. In amphibians only mammalian GnRH ([Arg8] GnRH) and type II GnRH (chicken GnRH II, [His5, Trp7, Tyr8] GnRH) have been identified. In the present study, a full-length cDNA encoding a novel type of GnRH was isolated from pituitary of Rana dybowskii. The GnRH gene encodes a GnRH peptide ([Trp8] GnRH) in which tryptophan is substituted for arginine of mammalian GnRH Northern blot analysis revealed the presence of a single 500 bp transcript for the [Trp8] GnRH precursor in forebrain but its absence in testis, ovary, kidney and liver. Restriction digests of genomic DNA demonstrated a single copy of the gene. The [Trp8] GnRH immunoreactive cells were identified in the preoptic area of the frog brain. Synthetic [Trp8] GnRH was tested for its ability to stimulate inositol phosphate production by COS-1 cells transfected with the cloned Xenopus pituitary GnRH receptor and the cloned human GnRH receptor. [Trp8] GnRH had a potency of about 60% compared with mammalian GnRH ([Arg8] GnRH) for the Xenopus receptor, whereas the potency of [Trp8] GnRH was ≃ 5% compared with mammalian GnRH for the human receptor. Both mammalian GnRH and [Trp8] GnRH were 1000-fold less potent than type II GnRH for the Xenopus GnRH receptor. The similar potency of [Arg8] GnRH and the novel [Trp8] GnRH for the Xenopus pituitary receptor indicates that, unlike the human receptor, the Xenopus receptor does not discriminate between these amino acids in position eight thereby allowing substitution of the arginine in the mammalian GnRH. (C) 2000 Elsevier Science Ireland Ltd.
Statistics
Citations: 73
Authors: 7
Affiliations: 4
Research Areas
Genetics And Genomics