Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

chemistry

Defects induced enhancement of antifungal activities of Zn doped CuO nanostructures

Applied Surface Science, Volume 560, Article 150026, Year 2021

CuO nanostructures doped with different concentration of Zn have been synthesized by a simple low-cost combustion method. The prepared samples have been tested by the various techniques such as X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Optical absorption spectroscopy, Photoluminescence, and X-ray photoelectron spectroscopy (XPS). XRD confirmed the presence of the monoclinic phase of CuO along with an extra ZnO phase in the CuO:Zn. TEM results confirmed almost spherical - shaped nanoparticles as well as some irregular shaped NPs for pure CuO and Zn doped CuO with the average size from 24 to 55 nm. The change in morphology revealed a structural change in the CuO:Zn crystal due to different concentration of the Zn. The chemical study was done by XPS and the results were also correlated with XRD based results. The role of localized defects was compared and interpreted for the change in the luminescence spectral bands, micro-stains and oxidation states of the CuO:Zn for the different concentrations. CuO:Zn nanostructures demonstrated significant antifungal activities against two South African plant pathogens, Alternaria alternata CGJM3078 and Alternaria alternate CGJM3006, in comparison to pure CuO samples. The result showed that the pure and Zn doped CuO samples could be used as a good antifungal agent that could have an extensive applications in the agricultural and biotechnological industries.
Statistics
Citations: 48
Authors: 6
Affiliations: 2