Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

agricultural and biological sciences

Effect of 40 and 80 years of conifer regrowth on soil microbial activities and community structure in subtropical low mountain forests

Forests, Volume 7, No. 10, Article 244, Year 2016

The effects of long-term reforestation on soil microbial communities and biomass are poorly understood. This study was conducted on two coniferous plantations: Cunninghamia konishii Hayata, planted 40 years ago (CONIF-40), and Calocedrus formosana (Florin) Florin, planted 80 years ago (CONIF-80). An adjacent natural broadleaf forest (BROAD-Nat) was used as a control. We determined microbial biomass C and N contents, enzyme activities, and community composition (via phospholipid fatty acid [PLFA] assessment). Both microbial biomass and PLFA content were higher in the summer than in the winter and differed among the forests in summer only. Total PLFA, total bacterial, gram-positive bacterial, gram-negative bacterial, and vesicular arbuscular mycorrhizal fungal contents followed the same pattern. Total fungal content and the ratios of fungi to bacteria and of gram-positive to gram-negative bacteria were highest in CONIF-40, with no difference between the other forests. Principal component analysis of PLFA contents revealed that CONIF-40 communities were distinct from those of CONIF-80 and BROAD-Nat. Our results suggest that vegetation replacement during reforestation exerts a prolonged impact on the soil microbial community. The understory broadleaf shrubs and trees established after coniferous plantation reforestation may balance out the effects of coniferous litter, contributing to bacterial recovery. © 2016 by the authors.

Statistics
Citations: 18
Authors: 1
Affiliations: 3
Identifiers