Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

engineering

Multi-component droplet heating and evaporation: Numerical simulation versus experimental data

International Journal of Thermal Sciences, Volume 50, No. 7, Year 2011

The earlier reported simplified model for multi-component droplet heating and evaporation is generalised to take into account the coupling between droplets and the ambient gas. The effects of interaction between droplets are also considered. The size of the gas volume, where the interaction between droplets and gas needs to be taken into account, is estimated based on the characteristic thermal and mass diffusion scales. The model is applied to the analysis of the experimentally observed heating and evaporation of monodispersed n-decane/3-pentanone mixture droplets at atmospheric pressure. It is pointed out that the effect of coupling leads to noticeably better agreement between the predictions of the model and the experimentally observed average droplet temperatures. In most cases, the observed droplet temperatures lie between the average and central temperatures, predicted by the coupled solution. For the cases reported in this study, the observed time evolution of droplet radii cannot be used for the validation of the model. It is pointed out that the number of terms in the series in the expressions for droplet temperature and species mass fraction can be reduced to just three, with possible errors less than about 0.5%. In this case, the model can be recommended for the implementation into computational fluid dynamics (CFD) codes and used for various engineering applications, including those in internal combustion engines. © 2011 Published by Elsevier Masson SAS. All rights reserved.

Statistics
Citations: 154
Authors: 4
Affiliations: 3