Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

Highly sensitive photoelectrochemical assay for DNA methyltransferase activity and inhibitor screening by exciton energy transfer coupled with enzyme cleavage biosensing strategy

Biosensors and Bioelectronics, Volume 64, Year 2015

Highly sensitive DNA methyltransferase (MTase) activity and inhibitor screening photoelectrochemical (PEC) assay was developed based on the exciton energy transfer (EET) effect coupled with site-specific cleavage of restriction endonuclease (HpaII). The assay was designed by integrating the Au nanoparticles (NPs) labeled probe DNA (pDNA-Au) with CdSe quantum dots (QDs). The strong EET effect between Au NPs and CdSe QDs resulted in the dramatic decrease of photocurrent signal. The pDNA carried a sensing region for specifically recognizing target DNA (tDNA) and hybridizing with it to form a DNA duplex. With the site-specific cleavage of HpaII, the DNA duplex could be cleaved and Au NPs would be released, which broke the EET and resulted in the restoration of photocurrent signal. However, when the DNA duplex was methylated by M.SssI MTase, this cleavage of HpaII was blocked, and therefore the unbroken EET effect kept the lower photocurrent signal. That was, the restored photocurrent was inversely proportional to the MTase activity. Based on this strategy, the PEC assay could determine as low as ~0.0042. U/mL of M.SssI MTase with a linear range from 0.01 to 150. U/mL. In addition, the assay could be used for the screening of the inhibitors of MTase. This PEC assay provides a promising platform for monitoring the activity and inhibition of DNA MTase, and thus shows a great potential in cancer diagnostics and anti-cancer drugs discovery.
Statistics
Citations: 83
Authors: 6
Affiliations: 3
Identifiers
Research Areas
Cancer
Genetics And Genomics