Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

The five cleavage-stage (CS) histones of the sea urchin are encoded by a maternally expressed family of replacement histone genes: Functional equivalence of the CS H1 and frog H1M (B4) proteins

Molecular and Cellular Biology, Volume 17, No. 3, Year 1997

The cleavage-stage (CS) histones of the sea urchin are known to be maternally expressed in the egg, have been implicated in chromatin remodeling of the male pronucleus following fertilization, and are the only historic variants present in embryonic chromatin up to the four-cell stage. With the help of partial peptide sequence information, we have isolated and identified CS H1, H2A, H2B, H3, and H4 cDNAs from egg poly(A)+ mRNA of the sea urchin Psammechinus miliaris. All five CS proteins correspond to replacement histone variants which are encoded by replication-independent genes containing introns, poly(A) addition signals, and long nontranslated sequences. Transcripts of the CS histone genes could be detected only during oogenesis and in development up to the early blastula stage. The CS proteins, with the exception of H4, are unique histories which are distantly related in sequence to the early, late, and sperm historic subtypes of the sea urchin. In contrast, the CS HI protein displays highest sequence homology with the HIM (B4) histone of Xenopus laevis. Both H1 proteins are replacement histone variants with very similar developmental expression profiles in their respective species, thus indicating that the frog H1M (B4) gene is a vertebrate homolog of the CS H1 gene. These data furthermore suggest that the CS histories are of ancient evolutionary origin and may perform similar conserved functions during oogenesis and early development in different species.
Statistics
Citations: 50
Authors: 6
Affiliations: 3
Identifiers
Research Areas
Genetics And Genomics
Participants Gender
Male