Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

materials science

Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps

Cellulose, Volume 20, No. 6, Year 2013

The effect of the hemicellulose content and that of the fibre morphology on the nanofibrillation behaviour of delignified cellulose pulps were studied. For this purpose, pulps from two non-woody plants, alfa (Stipa tenacissima) and sunflower (Helianthus annuus), were delignified using NaClO2/acetic acid and the NaOH pulping processes to obtain fibres with different hemicellulose contents. The ensuing fibres were characterized by chemical analysis, SEM, FTIRS and X-ray diffraction. The fibres were then disintegrated into nanofibrillated cellulose (NFC) using either a high pressure homogenizer or a domestic blender. The degree of fibrillation and the morphology of the nanofibrillated fractions were evaluated by centrifugation and Field-emission scanning electron microscopy. Pulps containing the highest hemicellulose content showed higher yields of the nanofibrillated fraction and a better aptitude for the individualization of the microfibrils. Furthermore, it was shown that fibres from sunflowers exhibiting a thinner cell wall were easier to fibrillate and could be disintegrated into NFC by just using a simple domestic-blender once deliginification process was carried out using the NaClO2/acetic acid method. Eucalyptus fibres were also used to further confirm the key role of hemicelluloses in the nanofibrillation process of woody plants. © 2013 Springer Science+Business Media Dordrecht.
Statistics
Citations: 146
Authors: 5
Affiliations: 3
Identifiers
Research Areas
Environmental