Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

physics and astronomy

Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin

Applied Radiation and Isotopes, Volume 61, No. 6, Year 2004

The objective of this work was to establish a new procedure for 228Ra determination of natural waters via preconcentration of radium on MnO2 and separation of its daughter, 228Ac, using Diphonix ion exchange resin. Following removal of potential interferences via passage through an initial Diphonix Resin column, the first daughter of 228Ra, 228Ac, is isolated by chromatographic separation via a second Diphonix column. A holding time of >30h for 228Ac ingrowth in between the two column separations ensures secular equilibrium. Barium-133 is used as a yield tracer. Actinium-228 is eluted from the second Diphonix Resin with 5ml 1M 1-Hydroxyethane-1,1-diphosphonic acid (HEDPA) and quantified by addition of scintillation cocktail and LSC counting. Radium (and 133Ba) from the load and rinse solutions from the 2nd Diphonix column may be prepared for alpha spectrometry (for determination of 223Ra, 224Ra, and 226Ra) by BaSO4 microprecipitation and filtration. Decontamination tests indicate that U, Th, and Ra series nuclides do not interfere with these measurements, although high contents of 90Sr (90Y) require additional treatment for accurate measurement of 228Ra. Addition of stable Sr as a "hold back" carrier during the initial MnO2 preconcentration step was shown to remove most 90Sr interference. © 2004 Elsevier Ltd. All rights reserved.
Statistics
Citations: 57
Authors: 4
Affiliations: 3