Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

chemical engineering

Dissolution of silver nanoparticles in colloidal consumer products: effects of particle size and capping agent

Journal of Nanoparticle Research, Volume 21, No. 7, Article 155, Year 2019

The utilization of silver nanoparticles (AgNPs) in consumer products has significantly increased in recent years, primarily due to their antimicrobial properties. Increased use of AgNPs has raised ecological concerns. Once released into an aquatic environment, AgNPs may undergo oxidative dissolution leading to the generation of toxic Ag+. Therefore, it is critical to investigate the ecotoxicological potential of AgNPs and determine the physicochemical parameters that control their dissolution in aquatic environments. We have investigated the dissolution trends of aqueous colloidal AgNPs in five products, marketed as dietary supplements and surface sanitizers. The dissolution trends of AgNPs in studied products were compared with the dissolution trends of AgNPs in well-characterized laboratory-synthesized nanomaterials: citrate-coated AgNPs, polyvinylpyrrolidone-coated AgNPs, and branched polyethyleneimine-coated AgNPs. The characterization of the studied AgNPs included particle size, anion content, metal content, silver speciation, and capping agent identification. There were small differences in the dissolved masses of Ag+ between products, but we did not observe any significant differences in the dissolution trends obtained for deionized water and tap water. The decrease of the dissolved mass of Ag+ in tap water could be due to the reaction between Ag+ and Cl−, forming AgCl and affecting their dissolution. We observed a rapid initial Ag+ release and particle size decrease for all AgNP suspensions due to the desorption of Ag+ from the nanoparticles surfaces. The observed differences in dissolution trends between AgNPs in products and laboratory-synthesized AgNPs could be caused by variances in capping agent, particle size, and total AgNP surface area in suspensions. [Figure not available: see fulltext.].
Statistics
Citations: 16
Authors: 5
Affiliations: 4
Identifiers
Research Areas
Environmental