Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

chemical engineering

Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR

Applied Catalysis B: Environmental, Volume 144, Year 2014

Motivated from the increasing environmental concerns associated with the formation of cyanotoxins released by cyanobacteria in waters, this study focused on the synthesis and evaluation of visible light-sensitized S, N and C co-doped polymorphic titanium dioxide (CDPM-TiO2) nanoparticles for photocatalytic destruction of microcystin-LR, one of the most common and toxic cyanotoxins. The CDPM-TiO2, containing anatase, brookite and rutile phase, was synthesized using a modified sol-gel method followed by calcination at 300600°C. Thiourea was utilized as a precursor for the dopants. This work took the initiative to have detailed characterization on the co-doped polymorphic TiO2 by several techniques and utilize the CDPM-TiO2 on cyanotoxin treatment. The results showed that the physicochemical properties of CDPM-TiO2 samples were highly dependent on the calcination temperature. The CDPM-TiO2 sample calcined at 300°C (CDPM300) exhibited better physicochemical characters including higher surface area and stronger photo-absorption in the visible light region. The sulfur dopant was attributed to S6+ species; nitrogen was ascribed to interstitial N; carbon was assigned to the TiOC bond. Moreover, CDPM300 showed highest photocatalytic activity for microcystin-LR destruction under visible light irradiation among all CDPM-TiO2 nanoparticles, which can be considered as a promising demonstration of such visible light-sensitized photocatalysts in the treatment of an important cyanotoxin in water. © 2013 Elsevier B.V.
Statistics
Citations: 198
Authors: 8
Affiliations: 5
Research Areas
Environmental